

The Economics of Optimal Fruit Fly Trapping

Tom Kompas

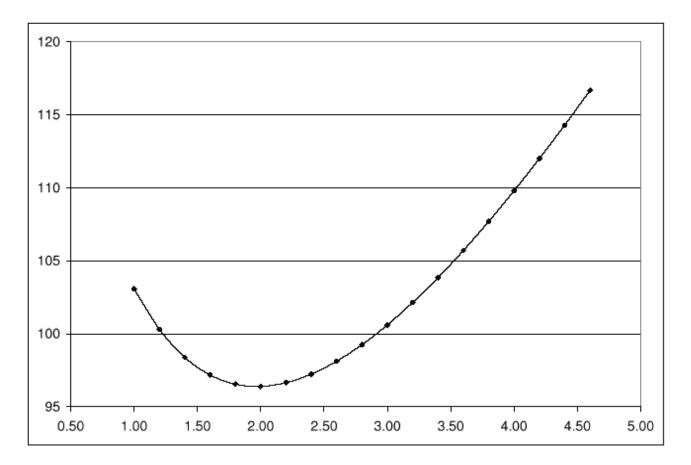
Centre of Excellence for Biosecurity Risk Analysis (CEBRA) Centre for Environmental and Economic Research (CEER) University of Melbourne

NFFC-DAWE Webinar - Fruit fly predictive modelling and forecasting in Australia

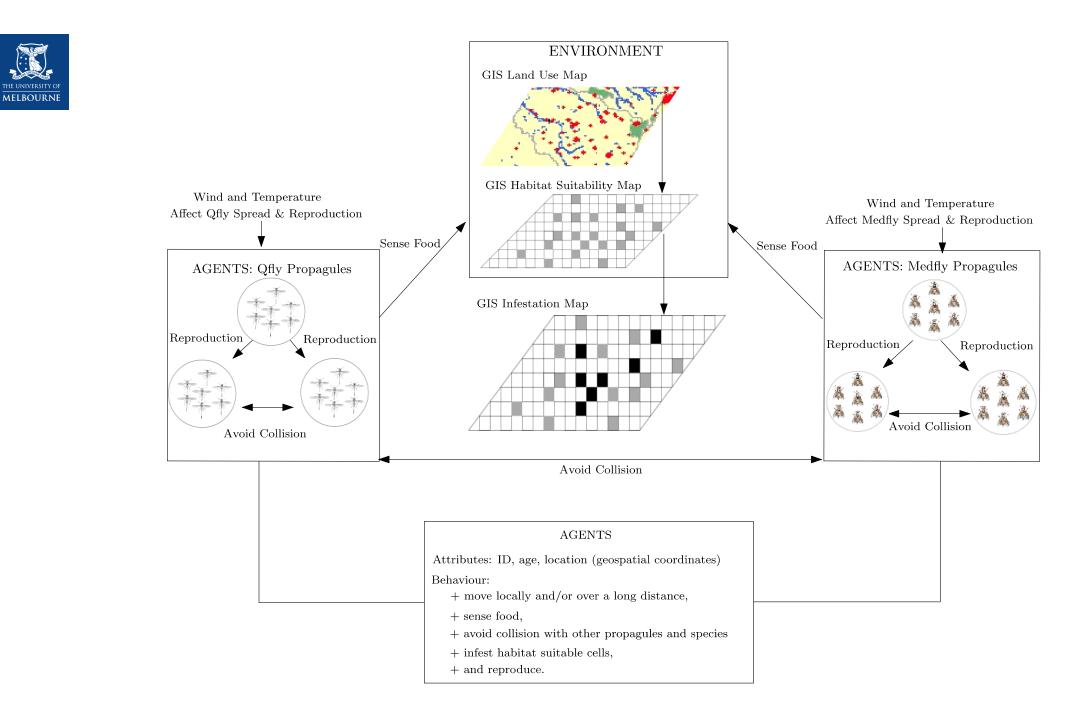
Centre for Environmental & Economic Research

"The School of BioSciences acknowledges the Wurundjeri and Bunurong/Boon Wurrung Peoples of the Kulin Nation as the Traditional Owners of the land on which our school and The University of Melbourne stand. We pay our respects to their Elders both past and present."

School of BioSciences

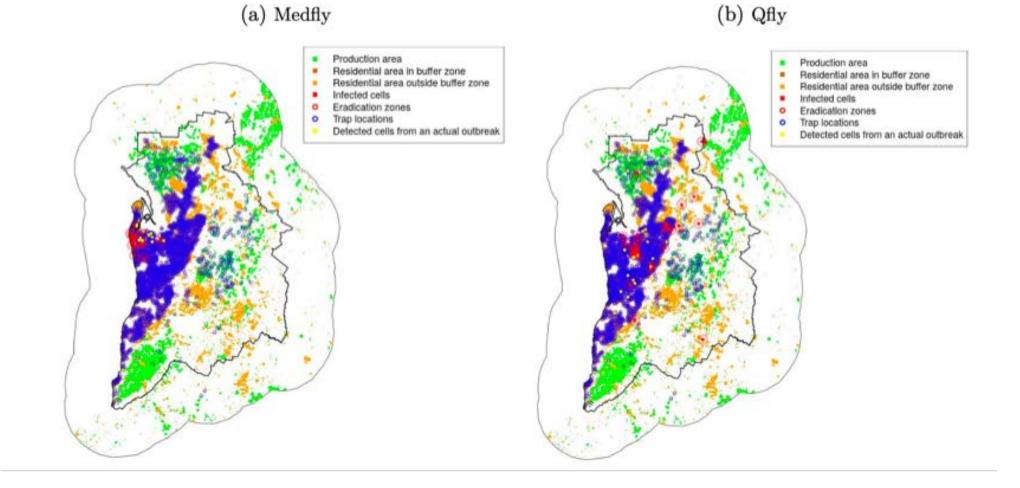


Research Design: Optimal Surveillance


- *Benefit*: Surveillance ensures 'early detection', lowering economic and environmental losses and pest/disease management costs.
- *Tradeoff*: The more early the detection the more expensive the surveillance measure.
- *Objective*: Find optimal surveillance expenditures to minimize (how many traps and where? ...
 - Economic losses (e.g., plant and animal losses, damage to the environment, recreational losses, trade bans, etc.)
 - Eradication and management costs of any pest/disease incursion
 - Surveillance expenditures (e.g., monitoring, the cost of setting and monitoring traps, etc.)
- *Method*: Stochastic (Optimal Control) Bioeconomic Model with a Jump-Diffusion Process and Spatial Optimization.

Optimal Surveillance Grid and Expenditures

Optimal: one trap per 2,000 km² and $E^*(c) =$ \$3m (AUS)



Pameter	Description	Unit	MedFly	QFly
	Random Dispersal	Model		
λ_Q, λ_M	Arrival rate by a single fruit $flies^{(a)}$	0.20	0.35	
$\lambda_Q * \lambda_M$	Arrival rate by both fruit $flies^{(a)}$	0.07	0.07	
A	Period when propagule can survive as flies	week	10	10
	and infest a habitable $\operatorname{cell}^{(b)}$			
Pjump	Probability of a propagule to take a long	P(X=1)	0.3	0.3
	jump ^(c)			
r _{jump}	Maximum distance of a long $\operatorname{jump}^{(d)}$	$\rm km/1^{st}$ week	9.5	40
r _{local}	Maximum distance of local $\mathrm{travel}^{(b,m)}$	km/week	1.0	1.4
γ	Time until the natural detection point	week	26	26
	$(\gamma = 1)^{(h)}$			
π	Average number of propagules $released^{(e)}$	#/week	2.5	2
	Economic Mod	lel		
r _{eradication}	Radius for eradication $\operatorname{zone}^{(l)}$	km	1.5	1.5
$\mathbf{r}_{\mathrm{suspension}}$	Radius for suspension $zone^{(l)}$	km	13.5	13.5
e	Eradication $cost^{(f)}$	\$/per ha	269	269
d	Damage cost (60% of production value) $^{(h)}$	\$	cell-specific	cell-specifi
z	Suspension $cost^{(i)}$	\$	cell-specific	cell-specifi
r	Revenue loss of the research $\operatorname{area}^{(h)}$	\$/week	2905.6	2905.6
8	Surveillance cost per trap $\operatorname{location}^{(h)}$	\$/year	202.9	202.9
T_{mkt}	Length of international market $closure^{(g)}$	month	8.5	8.5

Figure 2: Simulated versus actual outbreaks

Grid size in		Surveillance	Eradication	Suspension	Damages	Revenues	Total expected
residential	production	cost	cost	cost		loss	cost
areas (km)	areas (km)	(Mil. \$AU)	(Mil. \$AU)	(Mil. \$AU)	(Mil. \$AU)	(Mil. \$AU)	(Mil. \$AU)
0.1	0.1	53.0	0.052	0.997	0.032	1.62	55.7
0.4	0.5	3.57	0.402	2.78	0.294	3.34	10.4
0.4	5	2.71	0.573	3.18	0.465	3.69	10.6
5	0.5	1.30	1.38	4.23	1.061	4.83	12.8
5	5	0.263	1.70	4.43	1.344	5.26	13.0

Notes: The optimal grid size is highlighted in grey.

Thanks for listening!

Tom Kompas tom.kompas@unimelb.edu.au **www.tomkompas.org**

