A PRAGMATIC FRAMEWORK FOR MAPPING ESTABLISHMENT POTENTIAL OF PLANT PESTS

Dr James Camac

Date: 06/09/2021

✓ @jscamacQ jscamac

Who am I?

Research Fellow within the Centre of Excellence for Biosecurity Risk Analysis (CEBRA)

- Plant pest risk mapping for early detection;
- Estimating country exposure to new threats;
- Using surveillance data to estimate likelihoods of pest/disease absence

Developing pragmatic maps of establishment likelihood for plant pests

Technical Report for CEBRA project 170607

James Camac¹, John Baumgartner¹, Andrew Robinson¹, Jane Elith¹, and

contributions from: Dr Ranjith Subasinghe² Dr Mark Stanaway² Dr Susie Collins² Dr Anaís Gibert¹ Dr Matthew Hill³ Dr Peter Caley³ Dr Simon Barry³

¹The Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne ²Department of Agriculture, Water and the Environment ³Data61, CSIRO

November 3, 2020

Using edmaps & Zonation to inform multipest early-detection surveillance designs

Technical Report for CEBRA project 20121001

James Camac¹, John Baumgartner¹, Susan Hester², Ranjith Subasinghe³, and Susie Collins³

¹The Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne ²UNE Business School, University of New England ³Department of Agriculture, Water and the Environment

August 2, 2021

"To develop a **general** and **pragmatic** framework for creating maps of pest establishment potential for the purposes of informing where to prioritise finite **early detection** surveillance resources for exotic **plant pests & diseases**"

Common approaches

Climate suitability models

Common approaches

Pathway analysis/interception models

Pathway/interception models

Barriers to pest establishment

Adapted from Catford et al. 2009

- We have imperfect and incomplete data
- O Must make the most of the data we do have!
- Need to rely on assumptions and *rules of thumb*
 - These should be grounded in common sense
- Get the foundations right and then add complexity as data becomes available

The framework

8

Four case study pests

- \bigcirc 4 exotic fruit flies
- Gypsy Moth
- Khapra beetle
- Brown marmorated Stink Bug (BMSB)
- 2 Sawyer beetles
- Bee mites
 - Asian honey bee

- O Xylella
 - 4 insect vectors & plant cuttings
- O Citrus Canker
- HLB disease
 - Asiatic & African citrus psyllids

The framework: Pathways

Pathways units were distributed post-border using a number of *rules of thumb* and the following data:

- Human population density
- Distance from international airport
- Tourist accommodation (ABS)
- Distance from marine port
- Fertiliser usage statistics (ABS)
- Port container discharge numbers (BITRE)
- Container destination data (ABS)

Threat	Pathway	N events (yr ¹) (95% Cl)	Pr(Viability) (95% Cl)
Pest X	Mail	0.1, 10	0.0001, 0.00001
Pest X	Air passengers	1, 20	0.01, 0.1
Pest X	Imported machinery	10,100	0.001, 0.01

Informed by:

- Border interception data
- Expert elicitation
- Risk-Return Resource Allocation model (RRRA)

Abiotic suitability

Many approaches

- Different assumptions
- Different data requirements
- Different outputs (not all are comparable amongst species)
- Fraught with inappropriate use
- O Truth is unknown
- No single best method

- Australian Land Use and Management (ALUM) raster
 - 100 + landuse types
- National Vegetation Information System (NVIS)
 - 98 vegetation types
- NDVI/Fractional vegetation cover
- Native host distributions

Establishment potential

Simplifying the workflow with the edmaps R package

Package 'edmaps'

August 11, 2020

Type Package

Title Estimate Likelihood of Pest Establishment

Version 1.4.0

Maintainer James Camac <james.camac@gnail.com>

Description: This package combines spatial environmental data (e.g. distance from airpert/marine ports, distribution of pest hubitad/bash) with biosecurity leakage trates (e.g. expert-disclud) to generate maps of the likelihoed of pest establishment across the landscape. Final outputs include raster datasets (GIII) in identing relatibioment likelihoed across the area of interest, as well as interactive (turni) and static (pdf) versions of these mars.

Depends R (>= 4.0)

SystemRequirements Java (>= 1.5), JRI, GNU make

How can these maps can be used?

Determine where to place early detection surveillance

Methyl Eugenol around Cairns

Examine how well existing surveillance captures establishment potential

Estimate probabilities of absence

- Use maps as prior belief of presence
- Estimate probabilities of absence using Bayes theorem

Accounts for geographic barriers that are otherwise not included

Capilure traps in and around Adelaide

Camac et al. 2019

Integrate with spread & demographic models

Initial incursions will occur relative to establishment potential

- More realistic spread model simulations
- Improved response preparation

(Bradhurst et al. 2021)

Combine with maps of susceptible *agricultural, environmental* and *recreational* values

- \bigcirc Risk = Likelihood × Consequence
- Allow allocation of resources according to risk
- Better pest prioritisation

Dodd et al. 2020 (value report)

Develop multi-threat surveillance programs

- Create establishment maps for a suite of threats
- Prioritize surveillance to shared areas of high establishment potential
- Consolidate surveillance resources

